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Figure 1.  Networked Infomechanical Systems (NIMS) 
introduces a hierarchy of fixed and mobile sensing nodes and 
infrastructure enabling access to complex, three dimensional 
environments.  NIMS mobility provides novel methods for 
establishing self-awareness of sensing uncertainty.  Further, 
examples of new NIMS distributed services include node 
transport, physical sample acquisition, energy harvesting and 
delivery, wireless network relay functions, and many others.   
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1. Introduction 

 Networked embedded sensor and actuator technology has developed over the last decade to now 
enable the vision of Ambient Intelligence.  This will fundamentally advance our ability to monitor and control 
the physical world with applications for consumers, healthcare, the commercial enterprise, security, and for 
science and engineering in the natural environment.  Significant progress has been made in the development 
of algorithms and complete systems for scalable, energy-aware networking, sensing, signal processing, and 
embedded computing.  Now, new information technology, microelectronics, and sensor systems are being 
integrated and deployed in some of the first 
applications in critical environmental monitoring.  
This progress, however, reveals a new set of 
challenges.  Specifically, distributed sensor networks 
have not yet acquired the essential capability to 
monitor and report their own spatiotemporally-
dependent sensing uncertainty.  Thus, while sensor 
networks may acquire information on events in the 
environment, these systems are not yet able to 
determine the probability that events may be 
undetected or determine how the combination of 
calibration error and unknown signal propagation 
characteristics may degrade the ability to fuse data 
across a distribution of sensors.  For example, in 
virtually all important application areas, static sensor 
nodes are confronted with unknown and evolving 
obstacles to vision or acoustic signal propagation 
that severely limit the ability to characterize features 
of interest and introduce uncertainty.  Most 
importantly, self-awareness of sensing uncertainty 
will be required, for in many applications it is only 
the sensor network that may be present in an 
environment and must be depended upon to report 
its true performance.   It is important to note that 
since it is physical phenomena and evolving 
environmental structures that induce uncertainty, 
then physical adaptation of a sensor network (for 
example, through robotic mobility) may provide the 
only practical method for detection and reduction of 
uncertainty.   

This Technical Report describes a broad new research thrust, Networked Infomechanical Systems 
(NIMS), that provides networked nodes exploiting infrastructure-supported mobility for autonomous 
operations and physical reconfiguration.  As shown in Figure 1, NIMS infrastructure and mobility allow 
nodes to explore complex, full three-dimensional environments.  This also enables active reduction of 
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uncertainty through physical reconfiguration of sensing nodes and infrastructures.  NIMS adds a unique 
capability for acquisition and transport of physical samples (for example of water or atmosphere) thereby 
providing methods for detection and analysis of trace components that are not detectable by conventional in 
situ sensors.  System operating lifetime is extended by NIMS infrastructure that provides energy harvesting 
(for example of solar energy) and energy distribution.  Finally, NIMS mobility and aerial deployment provides 
networking resources that may be located and oriented to optimize wireless links for mobile and fixed node 
systems. 

The remainder of this Technical Report begins in Section 2 with a description of the challenge problem 
of sensing uncertainty that inevitably appears in complex environments.  The NIMS sensor diversity 
capability is discussed next with its benefits for reducing sensing uncertainty, enabling adaptive sensor fusion, 
and extending rate-distortion, bandwidth and energy limits in distributed sensor networks.  NIMS 
applications are also described for natural environmental science and civil (built environment) monitoring.  
Section 3 introduces sensing diversity and its information theoretic foundations.  Sensing diversity reduces 
sensing uncertainty by exploiting the ability to introduce new sensor systems and to reconfigure sensor 
networks through robotic mobility.  Section 3 then continues with description of the fusion-based detection 
and localization enabled by NIMS. 

The development of NIMS introduces essential new tiers in the distributed sensing architecture.  These 
new tiers permit sensing, sampling, and logistics for transport of nodes, physical samples, energy, and data.  
The NIMS system hierarchy combines static and mobile sensor nodes, and physically reconfigurable 
infrastructure that provide sustainable mobility in large, complex three-dimensional spaces. This System 
Ecology and its attributes are described in Section 4 along with the methods of Coordinate Mobility that 
exploit the System Ecology for self-aware sensing and sampling. 

Finally, this Technical Report concludes with a description of a NIMS Ambient Intelligence application 
with a system deployment in natural environment monitoring.  

 
2. Self-Awareness for Sensing Networks 

2.1. The Sensing Uncertainty Problem 

Early work in the development of 
distributed sensor networks has demonstrated 
feasibility for low power, compact, sensor nodes 
and wireless sensor networks.[1-5] Scalable and 
energy-aware networking for densely distributed 
sensor nodes has been developed.[6-7]   In 
addition, cooperative signal processing methods 
have been demonstrated.[8-9]  Now, a 
multidisciplinary, international research 
community is addressing the broad spectrum of 
information theory, information technology, 
and fundamental sensing principles, to enable 
Ambient Intelligence for many applications.  

Distributed sensor networks provide the 
critical data source for Ambient Intelligence.  
Past research has demonstrated feasible 
operation of sensor networks.  However, the 
value of this data source for Ambient 
Intelligence depends on ensuring its fidelity for 
acquiring information on physical phenomena. There are many limitations contributing to degraded 
measurement fidelity in sensor networks; some examples can be provided to illustrate.  First, since 
phenomena under investigation are, in typical applications, inherently unpredictable, then the required density 

Together, the requirements for sensing fidelity and 
autonomous operation create the urgent need for a 
new distributed sensor attribute, self-awareness.  Self-
awareness provides a sensor network with the means to 
autonomously determine its sensing-uncertainty.  The 
autonomous nature of this self-aware operation is 
essential. Specifically, many emerging applications for 
distributed sensor networks require that sensor 
networks acquire and return data that are critical to
users and society.  For example, the sensor network 
may supply information required to guide natural 
environment protection or physical security. Of course,
human operators and other system may not be present 
at all locations and times in order to provide assurance 
of proper information acquisition.  Thus, scalable, 
reliable operation demands that the distributed sensor 
network be self-aware and autonomously probe, report, 
and optimize its own uncertainty. 
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of measurement sampling and sampling rate required to achieve low distortion measurement is temporally 
and spatially variable and may be unknown.  Further, since the development of phenomena and the evolution 
of the environment are unpredictable, then the propagation of sensor signals is also unpredictable.  To 
illustrate, normal urban traffic patterns, or changes in natural environments, may introduce unexpected 
obstacles to vision sensors, sharply reducing sensing fidelity.  Similarly, changes in foliage patterns or 
atmospheric conditions affect acoustic propagation. 

The unpredictability of arrival of events and the appearance of environmental obstacles to sensing limit 
sensing fidelity.  This, in turn, also limits the capability of sensor data fusion methods that rely on many 
sensor inputs to test a hypothesis regarding the presence and behavior of phenomena and signal sources in 
the environment.  It is most important to note, however, that it is a fundamental goal for distributed sensor 
networks to enable autonomous monitoring of the physical environment and to acquire information about the 
evolution of events.   

To illustrate these principles of 
sensing self-awareness, consider Figure 
2.  Here a mobile source moves 
through an environment, producing 
an acoustic signal detectable by 
acoustic sensors and also presenting 
a visible signature for image sensors.  
However, obstacles in the 
environment (natural foliage in a 
natural environment, mobile or 
static objects or structures in an 
urban environment) lead to 
fundamental distortion in 
measurements.   Specifically, the 
motion of the mobile source may 
not be observed by occluded image 
sensors and signals emitted by 
mobile acoustic sources may be 
attenuated and distorted with an unpredictable nature as a result of propagation through distributed obstacles. 

It is most important to note that the sensor systems do not presently possess the means to rapidly and 
accurately determine the presence of obstacles.  An obstacle to sensing may not be detectable (for example by 
an acoustic sensor) and may not be interpreted properly by local analysis of images.  Of course, a sensor 
network may hypothesize the presence of obstacles based on an observation of few or no detectable sources.  
However, verification of this hypothesis itself requires that a reliable model exist for the expected arrival of 
sources and that these sources arrive so frequently that a model for obstacle presence may be rapidly derived. 
This is clearly not a reliable and general solution to this most important problem. 
. 

2.2. NIMS Infrastructure-Enabled Mobility for Sensing Self-Awareness 

It is clear that sensing uncertainty is perhaps the primary concern in distributed sensor networks since it 
limits the acquisition of high-fidelity environmental information and it is this, after all, that motivates 
distributed sensor deployment.  It is also clear that physical reconfiguration achieved through proper forms of 
mobility may be required to circumvent sensing obstacles (as will be discussed further in Section 4.1).  
However, here are conditions on the form of mobility that can enhance the full set of distributed sensing 
operational capabilities. For example, in addition to providing diverse location and perspective and providing 
navigation through complex environments, it is also essential that mobility methods be predictable and 
precise.  Specifically, the mobility mechanism must reduce system-wide spatio-temporal uncertainty as opposed 
to increasing uncertainty as a result of errors or limitations in motion or navigation. As will be seen, this 
generally requires the introduction of an infrastructure.   

Figure 2.  Environments inherently present obstacles to sensing, as shown here for 
distributed imaging and acoustic sensors. Unpredictable source motion leads to 
obscuration of the source from sensors. 
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The requirements for sensor mobility control for applications in environment monitoring are as follows:  
1) Sensor mobility must permit a wide range of location and viewing perspectives.  This requires the ability to 
change separation between sources and sensors over a wide range and choose a wide range of viewing or 
sensing perspectives.  In the natural environment, this will require overhead viewing perspective.  2) Sensor 
mobility must be precise so that sensor location uncertainty does not degrade sensing uncertainty yet further.  
3) Sensor mobility must accommodate complex terrain and surfaces that may incompatible with surface 
vehicle navigation (or may themselves be disturbed by vehicle passage).  4) Sensor mobility must also be 
sustainable in that energy requirements and the rate of system degradation must be low.  At the same time, 
the impact of mobility on the environment (for example acoustic noise or powerplant exhaust emissions) 
must be minimized.  5) Finally, the sensor mobility system must also permit logistics for motion and delivery 
of components that may include physical samples, energy sources, replacement nodes, and other subsystems. 

(a)   (b)  
Figure 3.  (a) NIMS Systems include fixed and mobile nodes along with instrumented and adaptable infrastructure.  NIMS 
nodes may be fixed to the infrastructure, may move on the infrastructure, or be delivered to locations and recovered by other nodes.  
(b) A schematic view of a NIMS deployment in a riparian stream environment with distributed sensing, sampling, and node 
transport 
 

The addition of an infrastructure immediately addresses the above requirements in a way that would not 
be possible with other robotic forms.  While many infrastructure types are anticipated, the “cableway” 
infrastructure discussed previously and discussed further below provides an example that meets these 
requirements, and is compatible with a broad range of environmental science applications.  Further, it 
requires small logistics cost for deployment (that is a deployment cost no greater than deploying fixed sensors 
at elevation).  The cableway infrastructure will be discussed with reference to the above requirements.  1) 
First, the cableway permits a wide range of location and viewing perspectives by allowing aerial suspension of 
nodes that may themselves probe a three-dimensional volume, as shown in Figure 3a.  2) The cableway 
provides precise sensor mobility.  3) Also, the cableway system allows sensor nodes to negotiate complex 
terrain. 4) The cableway system also enables sustainable operation.  Energy requirements for mobility are 
modest and may be made vanishingly small when transport velocity is low and mass-balancing is employed to 
reduce gravity-work.  5) Finally, the cableway system provides a means to acquire physical samples and deploy 
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sampling systems.  It also permits low energy transport of massive payloads (if required) and permits the 
implementation of logistics for energy, node, and sample transport. 

2.3. NIMS Sensing, Sampling, and Applications 

The NIMS architecture of fixed and mobile devices and infrastructure enables an expanded set of new 
applications for distributed sensing and monitoring that were beyond the scope of fixed sensors alone.  These 
exploit the capabilities summarized in Table 1 of Sensing Diversity, Fusion Based Identification and 
Localization, and Distributed Physical Sampling.  These methods will be further described in Section 3.   

 
2.3.1. Natural Environmental Monitoring 

Ambient Intelligence has been extended to the natural environment with distributed sensing deployments 
for fundamental science investigations of phenomena including global change, and for providing the data 
required for environmental stewardship. The application of NIMS to natural environment monitoring 
provides a means to reach the full three-dimensional region where the ecosystem exists. This application 
exploits sensing diversity that addresses the biocomplexity of the natural environment and its obstacles to 
sensing. Further this application relies on effective identification and localization.  Finally, in addition to 
sensing, NIMS also provides essential sampling capability for the many investigations relying on laboratory 
analysis of chemical and biological phenomena for which no in situ sensors are available.  

NIMS applications also include monitoring of environmental resources with example applications to 
efficient and safe use of agricultural land, harvesting of coastal resources, management of effluent, and 
collection of consumer water resources.  All of these applications require monitoring by sensing and sampling 
of complex, dynamic terrestrial and marine environments.  NIMS sensing and sampling will provide the 
unique capability of precise deployment and recovery of sensor systems in harsh aquatic environments.  Also, 
NIMS physical sampling, driven by algorithms based on regular, triggered, or model-based sampling 
trajectories will allow for acquisition and processing of samples containing critical dissolved and suspended 
agents for which compact sensing systems do not yet exist.  Sample-based measurements of aquatic resources 
may include monitoring of nutrients (nitrates) and biological pathogens.  This also includes monitoring the 
effect of ecosystem dynamics (estuary flow, currents, tides, wave action, UV radiation) on the origin and fate 
of these agents. 

2.3.2. Public Safety and Emergency Response 

Physical safety and security includes a vast range of applications that have been supported by distributed 
sensors.  With new concerns regarding public health and safety, monitoring in urban environments is now 
critical.  Monitoring methods are required that provide high fidelity sensing in complex environments and 
that may rapidly adapt to emergency.  For example, in the event of fire or structural collapse, highly mobile 
and sustainable sensing systems are required for accurately assessing damage and directing assistance where 

NIMS Sensing and Sampling Methods 

Sensing Diversity 
Sensing Diversity methods exploit mobility to select and distribute available 
sensing resources to both map sensing uncertainty in space and time and then 
adaptively reduce this uncertainty. 

Fusion Based Identification 
and Localization 

NIMS mobility and the diverse resources available to infrastructure-supported 
nodes enable a large, multidimensional solution space for optimizing the 
cooperative identification and localization or sources. 

Distributed Physical Sampling 
NIMS mobility enables the acquisition of in situ physical samples for identification 
and localization of phenomena by sensitive and accurate ex situ methods based 
on, for example, laboratory analysis. 

Table 1.  Networked Infomechanical Systems, with its precise and sustainable aerial mobility and reconfiguration capability, 
enables a series of  new capabilities for distributed sensing and sampling. 
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required.  The urban environment presents a high spatial density of obstacles to imaging and sensing.  In the 
event of structural collapse, new obstacles will appear and may create environments that are unsafe for 
emergency responders. 

The NIMS capability for self-awareness of sensing uncertainty brings substantial new value to this 
application area.  Specifically, as remote systems are deployed in environments, it may be that no manual 
observation of the environment is otherwise available (since no personnel may be present or because the 
environment may become unsafe for personnel presence).  Thus, if environmental events cause sensing 
systems to be degraded (for example an environmental change introduces a new obstruction to an image 
sensor) then the NIMS principles of sensor diversity and coordinated mobility will be essential to recover 
system reliability.  

NIMS capability may be deployed in place, integrated with structures, or may be rapidly deployed in 
response to events.  For example, unconstrained robotic systems (ground-based or aerial vehicles) may deploy 
NIMS infrastructure to provide a means for sustainable, intensive monitoring of a disaster environment with 
a diverse array of sensing and sampling devices. 
 
3. Networked Infomechanical Systems (NIMS): Enabling Self-Awareness 

3.1. Information Theoretic Foundations 

Fixed sensor networks inevitably confront sensing uncertainty due to inherent and evolving 
environmental evolution and the presence of distortion-inducing obstacles.  This is manifested as an 
uncertainty in the support of a hypothesis derived from distributed sensor data. For example, this may result 
in a reduced detection probability, an identification fault, a tracking error, or a misestimate of the population 
of individual sources. 

We can first consider the problem of detection, identification, and localization of sources by observation 
of an environment with a distributed sensor network.  First, consider N types of individual sensors, sk, in the 
environment.  Their location will be described by a manifold, M(t), with locations xk and time, t.  In typical 
applications of fixed, distributed sensors, these locations will be on the surface in the environment, or 
perhaps attached to natural or artificial structures that may or may not be under investigation themselves. 
Now, the set of sources (passive or active objects of interest) appear at locations y in a volume V, with 
location distribution p(y(t)) at time t.  Sensors will yield an observation set, Z, from one or more sensors. This 
set will generally form a time series or sequence of images. 

The nature of propagation from a source to a sensor will, clearly, determine the limits to sensing fidelity.  
Of course, it is this propagation, not the properties of sensors elements or sampling characteristics that set 
the strictest limits on sensing fidelity.  Further, propagation characteristics may include frequency and phase 
dependent transfer functions as well as interference and noise.  For imaging sensors, obstacles in the line-of-
vision as well as confusion in background images combine to complicate propagation. The coupling between 
a sensor and its environment lends another important propagation consideration.  For example, the coupling 
between a ground-deployed seismic sensor and the surface introduces an additional transfer function that 
must be included in source characterization. 

Observations, therefore, depend on propagation gains G(x,y,t) between sensors at x and sources y at a 
time t. Models for propagation gains may be either deterministic or based on the propagation loss statistics of 
the inhomogeneous medium with respect to different sensing modes. For example, in imaging a 3-
dimensional obstruction model is required. It is clearly elevation dependent and thus different parts of the 
sensor deployment manifold have different loss values, and these values themselves will be time-dependent as 
the environment evolves. 

Together, these contributions to sensing uncertainty have been present in distributed sensing and are 
well-known in specific applications.  Normally, complex site survey, preparation of the environment (for 
example the creation of a massive pier for a seismic sensor or the clearing of foliage for imaging sensors), and 
manual effort are devoted to each sensor.  However, distributed sensor networks are planned for rapid 
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deployment directly in unprepared, complex environments and will confront sensing uncertainty to a degree 
not reached for previous, isolated sensor deployments.  As will be discussed, there is a new pathway, based on 
NIMS, for addressing these fundamental problems. 

 
3.2. NIMS Sensor Diversity  

NIMS sensor diversity methods exploit NIMS mobility and physical reconfiguration to combine diverse 
sensing types, diverse sensor locations, and perspectives for applications including 1) Reducing fundamental 
sensing uncertainty, 2) Enabling an actively optimized form of sensor data fusion, 3) Extension of rate-
distortion limits, and, 4) Extension of energy and bandwidth constraints. 

3.2.1. Reducing Sensing Uncertainty with Sensor Diversity 

Sensing uncertainty in a 
conventional fixed sensor 
network arises due to the 
unknown and unpredictable 
characteristics of  G(x,y,t).  As 
was noted previously, since the 
arrival of events are 
unpredictable, and since 
obstacles to sensing may 
themselves be passive (and not 
detectable by sensors) then the 
fixed sensor network may 
generally never determine or reduce 
its uncertainty.  However, self-
awareness of sensing 
uncertainty can be obtained 
through sensor diversity. To 
illustrate, consider Figure 4. 
Note that for this example, 
increasing the density of 
sensors deployed on the surface 
has negligible impact on sensing 
uncertainty if, as is often the 
case, the density of obstacles is 
similar or even greater than that 
of sources.  An example is that 
of imaging sensors deployed at 
a low level (the understory) of a forest environment.  Here, experimental observations show that obstacle 
densities limit line-of-site viewing segments to distances of only one to several meters.  Thus, high probability 
detection of sources via imaging (should this be required to support a scientific investigation) requires an 
extremely high sensor deployment density. 

Sensor diversity, however, introduces methods for determination and reduction of sensing uncertainty 
through, deployment, operation, and re-deployment of sensors that provide diverse detection methods and 
perspectives.  

An illustrative example is shown in Figure 4.  Here we observe that sensing obstacles obscure the mobile 
source from the view of fixed sensors.  However, the introduction of sensor diversity through use of sensor 
nodes that are mobile and supported by (in this example) an overhead infrastructure offers a reduction in 
sensing uncertainty by placing image sensors in optimal locations and affording optimal viewing perspectives.   
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Figure 4.  As shown in Figure 2, mobile sources propagate through the environment 
and are generally not observable by fixed distributed sensors deployed at the surface.  
However, the introduction of Networked Infomechanical Systems (NIMS) mobile 
devices permits nodes to be physically relocated at optimized locations and with optimal 
viewing perspectives.  In addition, the presence of many source events may also lead to 
the physical redeployment of a fixed node to an optimized location and viewing 
perspective. 
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Sensor diversity itself depends on NIMS for providing viewing perspective and enabling precise mobility. 
NIMS, in this example, itself depends on infrastructure for both the support of nodes and the ability to move 
and replace nodes. Note that in contrast to conventional mobility systems, the NIMS infrastructure provides 
a high degree of certainty associated with motion and orientation, as required to reduce uncertainty. 

 
3.2.2. Exploiting Sensor Diversity by Active Fusion 

The advantages of sensor diversity and an example of its implementation are provided in an active sensor 
fusion method that seeks to optimize sensing uncertainty for each component contributing to the derived 
hypothesis. This can be applied to the source identification problem.  Here an optimization criterion is to 
select the largest likelihood p(sk|Z(x,y,t)) according to a fusion rule over the set of sensor locations x (each 
within M), over the ensemble y of locally relevant source positions (within V), at some time t, subject to a 
global cost constraint for placing sensors at the best locations, and the propagation model, G.   

Note that again, in contrast to conventional approaches, the location of sensors, x, may be actively 
adjusted in optimization.  Of course, there is a cost for this sensor re-location.  However, the cost constraint 
above can further include the energy cost of re-location as well as the cost processing data and 
communicating decisions to the end user. When a fidelity constraint (e.g., identification probability and 
latency) is added, this is then a network rate-distortion problem, with distributed lossy source coding and 
possibly cooperative communication. In other variations, sources may actually follow some trajectory, each 
node may follow a distinct trajectory (possibly responsive to the source), and the fusion rules/optimality 
criteria can be varied. While not always the best approach, the Bayes criterion is particularly interesting, since 
optimal fusion among multiple sensors for detection problems amounts to a maximization of mutual 
information [10,11]. It thus applies to sensors of widely diverse types (e.g., imagers and acoustic), with the 
main problems being determination of prior probabilities and the specific signal conditioning that leads to 
conversion of observations into sufficiently good approximations of the likelihoods with reasonable 
complexity. More generally one can form weighted sums of (quantized) log-likelihoods for other optimization 
criteria. 

 While many versions of these problems are being studied in the context of static sensor networks 
[8,9], NIMS dramatically transforms the available solution space. Rather than sensors remaining at static 
locations constraining the network to the sensing performance first observed at deployment time, the 
manifold of permitted locations is much larger and more topologically complex.  In addition, the cost of 
moving nodes among positions is relatively low. Therefore, nodes can be redeployed to take advantage of 
better knowledge of p(y) or G acquired through sustained observations, or with actual changes in the source 
and obstruction distributions (e.g. with season).  Further, the larger manifold of permitted positions enables 
choice of positions with lower obstruction, thereby allowing improved detection probabilities or lower 
communication energy costs between the static nodes and the infrastructure. The ability to reposition static 
nodes and also have nodes that sense while moving provides greater scope for investigation of adaptive 
algorithms. This allows, for example, a direct implementation of iterative optimization algorithms.  

 
3.2.3. Extending Rate-Distortion Limits 

Another example illustrating the benefits of sensor diversity achieved by NIMS mobility is the network 
rate-distortion problem. For the Gaussian n-helper problem, a main sensor X0 and n helpers X1, X2, … Xn 
observe a Gaussian source and then fuse their information while minimizing the set of transmission rates {R0, 
R1, … , Rn} subject to a distortion (fidelity) constraint D. The resulting rate-distortion region is bounded by 
[11]: 
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where ρ0k is the correlation between observations at sensors 0 and k.  As usual, log+(x) = max{log(x), 0}. For 
static networks, the sensor positions are fixed and the adaptation choices are limited to determining which 
nodes will participate in fusing information and at what rates. In the context of NIMS, on a local scale one 
can additionally ask for a given node deployment, manifold M, propagation model G and source distribution 
p(y) where the next node should be placed to minimize the expected rate, over the ensemble of source 
positions (or trajectories). Similar questions can be posed in terms of communication cost, rate savings that 
would be realized by repositioning some or all of the sensors Xn, or some combination of these quantities. 
The solution may serve for example as the iteration in a greedy deployment algorithm, possibly supplemented 
by occasional redeployment steps. Alternatively, this question may be asked in terms of specific estimates of 
source locations for tracking of a mobile source as it traverses the volume V, and based on the model of 
source motion and the constraints on node mobility how the nodes should be marshaled in a neighboring 
region. A global planning problem is to consider detection probabilities for nodes with given location 
distributions within a manifold M, and assess detection probabilities according to some fusion rule given G 
and p(y) (e.g., over the ensemble of locations). Then variations in M and node density may be considered to 
determine whether the average detection probability improves to meet the desired performance level.  
 

3.2.4. Extending Energy and Bandwidth Limits 

The NIMS infrastructure also dramatically changes the energy and bandwidth constraints for these 
optimizations so as to radically transform the solutions. Thus, while in static sensor networks energy 
constraints dictate intense processing at sources with careful management of observation duty cycles [12], in 
NIMS, the nodes connected to the cable network may have no such constraints, enabling a rich set of design 
trades that exploit the asymmetry between different classes of observers. The nodes and infrastructure may 
also be laid out to allow for lower energy ground to air links (single hop) or with a small number of hops 
between any given node and the infrastructure to mitigate scalability [13-16] and energy consumption issues. 
NIMS also allows local signal processing and sensing to be augmented with new resources, leading to a far 
less uniform distribution of resources throughout the sensing volume V (slowly varying with time), to achieve 
a given level of observation fidelity. That is, resources can be adaptively matched to actual conditions. 
 
 

3.3. NIMS Fusion-Based, Detection, Identification and Localization 

Fusion-based detection, identification, and localization of sources through cooperative algorithms 
operating over distributed nodes are fundamentally limited in the event of sensing uncertainty.  Typical 
distributed sensor applications expose sensing elements to a variable, uncertain sensing environment, and 
with potentially uncertain sensor calibration.  This fundamentally degrades the performance of essential 
cooperative algorithms that must be relied upon for the essential function of fusion-based information 
acquisition regarding sources. NIMS self-awareness and sensor diversity through physical reconfiguration 
directly addresses this most important and long-standing problem. 

For distributed sensor networks, source identification involves an interaction of layered suites of signal 
processing algorithms, networking algorithms, and distributed database access. The generic optimization 
problem is to maximize the mutual information subject to resource constraints (for example, energy reserves 
and number of nodes in the volume, V). In static networks, the energy constraints dictate layered processing, 
with low energy operations at the bottom level operating with constant vigilance, and higher levels operating 
episodically as detection thresholds are met or activation signals from other nodes are received. Similarly, 
nodes whenever possible process information to avoid communication; such as cooperative fusion of 
(approximate) likelihoods among a subnetwork of nodes, and then, only if necessary, exchange raw data for 
coherent combining. Data is queued based on its likelihood of being needed in a later query from a neighbor 
or remote observer. Node density can be adjusted to reduce the likelihood of more than one target being in 
the regard of a sensor so that expensive cooperative source separation algorithms can be avoided, with some 
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balance against node cost. These problems individually and collectively are the subject of many interesting 
research efforts.[18-21] 

 Note however that distributed fixed sensors are constrained to the limited locations and orientations 
X, and fixed energy resources that are provided at time of deployment—both planned based on knowledge of 
p(y) and G at deployment time. However, the environment provides unscheduled, surprising events that are 
distributed in space and time and may not be compatible with the mix of deployed sensors or other critical 
aspects of their deployment. While the group of nodes that participates in fusion in response to an event may 
adapt, the performance may not be adequate unless the initial deployment will greatly overprovision resources 
in the environment; that is, node densities and energy reserves corresponding to worst case conditions 
throughout the entire volume, V. 

 All of the design considerations for fixed networks play a role in NIMS, but mobility and the far 
greater resources available to nodes connected to or serviced by the infrastructure allow for a far broader 
source identification solution space. This is illustrated by the example in Figure 4. Here, the path of a 
mobile source is not detectable by sensors that are obstructed from viewing this source. The obstruction may 
be an obstacle to viewing by imaging sensors (for example foliage in an natural environment), an obstacle to 
acoustic propagation, or may also be a source of interference for a chemical sensor and or an ecosystem event 
that separates a chemical sensor from its medium to be sensed (e.g., change in water level). Sensor diversity 
addresses these problems: if optimal fusion of information from the resources deployed in a set of positions 
X is not sufficient to meet detection or identification performance criteria, then NIMS will allow resources to 
be re-deployed automatically. Self-aware operation results from this approach through algorithms that use 
diverse sensor types and perspectives to continuously perform measurements of sensing performance to 
ensure that adequate sensing coverage exists for establishing a high probability for detection of events. 

The (Bayes) data fusion problem in this context is to adapt the fusion rules to maximize the probability 
of selecting the most likely hypothesis based on the prior information and the set of observations. Consider 
the recursive estimation of log-likelihood functions for a single sensor: 

ln pS (s | Zr ) = ln pS (s | Z r−1) + ln pZ (z(r) | s)
pZ (z(r) | Zr−1)

⎡ 

⎣ 
⎢ 

⎤

⎦
⎥ 

where S is the set of hypotheses, z(r) is the observation taken at time r and Zi is the set of observations up to 
time i. Taking expectations on both sides, this equation may be interpreted as stating that the posterior 
information is equal to the prior information (to time r-1) plus the information obtained from the current 
observation. Data fusion is obtained by replacing the last term by a sum of the log-likelihoods over the set of 
sensors [11]. A variety of weighting strategies are possible, resulting in a broad set of fusion algorithms.  
Unfortunately, there may be considerable initial uncertainties in the propagation environment, the hypothesis 
priors, and the calibration of the sensors, all of which make the choice of effective fusion rules difficult. 

With NIMS, the ability to deploy a wide variety of devices makes the fusion problem (and subsequent 
identification problems) both richer and paradoxically more tractable through the ability to reduce these 
uncertainties.  Consider for example the problem of autonomous in situ calibration. Calibration is described 
by the above equation, where now the hypotheses are known with near-certainty, and the objective remains 
to determine the log-likelihood function given a test observation set (a standard) whose priors will generally 
not match those of the environment to be sensed. In the fusion context, the reliability of the measurements 
of individual sensors can be gauged according to how the likelihoods they report compare to the known 
hypotheses. With NIMS, it is possible to obtain the standards in several new ways. The shuttle network can 
actually create events: broadcast sound patterns, present a visible target for detection by imaging sensors, and 
introduce a seismic signal to calibrate acoustic, imaging, or seismic sensors, respectively. This enables the 
distributed determination of G. It may also transport an instrument that has been calibrated off-line into a 
region and measure the test events to precisely determine G and also measurement errors of instruments in 
its vicinity. Alternatively, samples can be collected and analyzed off-line, with the results compared to 
elements in the field. Based upon the model for instrument drift, an interpolation function can be applied to 
adjust measurements made in between calibration events. 
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Note further that there is no essential difference between determination of G and the basic update 
required for adaptive data fusion. In both instances, observations reduce the uncertainties and can serve as 
one step in a recursive update of the log-likelihood function. However, when observing natural phenomena, 
there will be decision uncertainty so that less weight will be assigned in updating according to the degree of 
that uncertainty. Further, in dealing with heterogeneous sensing modes or instruments with different 
accuracies (or calibration confidence) again not every observation will be accorded the same level of 
reliability. Indeed, unreliable sensors can be detected based on the extent their reported likelihoods match the 
weighted group consensus. New instruments can be brought into a region in which there is insufficient 
consensus or progress in reducing measurement uncertainties. Consequently, within the same simple 
mathematical framework it is possible with NIMS to explore in situ automated calibration, reliability, and 
adaptive data fusion. 

Consider for example the following localization algorithm. Nodes with arrays can estimate direction of 
arrival (DOA) for a source. It is desired to use the minimum number of such nodes to achieve a given 
accuracy. One way to proceed is to incrementally add nodes that lead to maximum reduction in the 
uncertainty following fusion [22,23]. It may be shown that given our current estimate of p(y) based on the 
sensors making observations, the potential for reduction of uncertainty is the entropy of the predicted DOA 
minus the entropy of the estimator. Our initial experimental results show great promise for static networks. 
This basic approach can be extended in NIMS: if the available nodes cannot produce sufficient accuracy, then 
additional resources can be brought to bear, or nodes moved to more advantageous positions, e.g., using a 
gradient search algorithm guided by uncertainty reduction. Further, the principle extends to other data fusion 
problems, provided the appropriate pre-processing can be accomplished to produce an estimate of the 
marginal reduction in uncertainty. 

 
3.4. NIMS Distributed Physical Sampling  

A limitation of the contribution of distributed sensors and even sensing diversity to information 
acquisition includes the limitations of fundamental sensing elements.  A primary goal of enabling scalable 
deployment of distributed sensors has been that individual elements be compact and low in mass (to reduce 
the logistics cost of deployment) and to present low energy demands.  Of course, it is also required that 
sensing elements provide reliability with adequate sensitivity (noise-equivalent signal spectral density) in the 
environment of interest.  However, many environmental characterization problems involving chemical 
sensing (solid, liquid, or gas phase) confront the need for detection of trace elements within interfering media.  
In addition, these sensor systems may require subsystems for management of media flow and filtering.  Also, 
in the event that trace element detection or isotopic analysis is required for an investigation, then compact 
sensors may not be available and laboratory-scale spectrometers may be needed.  Taken together, these 
fundamental measurement requirements may limit the capability of conventional distributed sensor networks 
since the fundamental measurement may not be possible with distributed, compact sensors.  However, again 
NIMS sensor diversity may be applied, but, now with physical sampling capability. 

NIMS infrastructure enabled mobility provides another high precision method with the ability to acquire 
physical samples (solid, liquid, or gas phase) from the environment for transport to centralized assets for 
analysis.  As shown in Figure 5, this includes the ability to acquire a compact sample and in addition to re-
provision sensors that may require entire replacement or replacement of materiel required for operations.  In 
addition, the NIMS infrastructure can enable the accurate recover, re-calibration and replacement of sensor 
systems.  The NIMS infrastructure effectively enables a distributed sensor to consist of two components, a 
remote forward area sampler, and a fixed base and possibly centralized, analysis system. 
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4. NIMS System Ecology 

4.1. NIMS System Ecology 

The central requirements for 
self-awareness has motivated the 
development of sensor diversity 
and coordinated mobility.  It is 
clear that physical 
reconfiguration (or a very high 
three-dimensional, volume 
density of deployed static sensor 
nodes) is required for enabling 
autonomous measurement and 
active reduction of sensing 
uncertainty in complex 
environments.  Further, it is also 
clear that to achieve the 
sustainable, precise, and capable 
sensing and sampling needed,  
infrastructure-enabled mobility is 
required. However, to achieve 
the ability to adapt to varying 
environments, and to scale to 
large deployments, an 
architecture is required that 
properly combines the advantages of fixed and mobile nodes and infrastructure.  In particular, it is important 
to introduce hierarchy to enable scalability with the assets requiring the largest resource costs being sparsely 
distributed and yet supporting a high spatial density of less capable nodes.  Further, this hierarchy of node 
architecture tiers must include standardized interfaces and methods for cooperation between tiers in order to 
exploit hierarchy in favor of scalable, sustainable, robust and high performance operations.  Specific 
applications may favor a larger distribution of elements in a specific tier and self-aware, self-adapting systems 
will adjust their own distribution to optimize application-specific resource costs and benefits. 

The hierarchy of fixed and mobile nodes tiers along with interaction among tiers, forming a System 
Ecology, as shown in Table 2.  Here, the resources exchanged between tiers along with system architecture 
define the System Ecology.  These resources include data, samples, nodes assets, and energy.  In some cases, 
resources are extracted from the environment (for example, sensor data, physical material samples, and solar 
energy) and in other cases these are supplied at the time of deployment.   

The lowest System Ecology level includes untethered fixed nodes, such as wireless sensor networks that 
can be precisely and autonomously deployed and maintained by NIMS for study of phenomena at 
appropriate spatial scales. The next level consists of tethered fixed assets such as wired suspension networks, 
mobility drive mechanisms, gateways (for energy and communications), position beacons, storage depots, and 
chemical analysis engines. Together, the three levels in this info-mechanical network provide a means for 
generating and transporting energy and information, where information may be in the form of bits or physical 
samples. 

NIMS operation algorithms confront the challenges of rapid spatio-temporal formation of teams (linking 
multiple tiers) that enhance sensing and sampling capability by autonomously allocating appropriate tasks and 
roles. This is related to previous progress in homogeneous [33] and to a lesser extent, heterogeneous teams 
[34] for agents and robotics. NIMS, however, departs from previous development by including a System 
Ecology, organized hierarchically, with a diversity of communication pathways and sensing assets. NIMS 
operation also depended on a multi-objective optimization, (engaging all ecology dimensions), spatially 
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Figure 5.  In addition to physical sensing, NIMS enables physical sampling where 
mobile devices may acquire samples according to an event-driven or scheduled 
algorithm and convey samples to centralized sample analysis facilities (that may 
include remote laboratory analysis).  NIMS also permits re-provisioning of in situ 
sensors that may be otherwise limited by a short operating lifetime in the medium. 
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distributed, and operates over a wide range of temporal scales (for example, defined by the speed of data 
transport and the speed of mechanical transport). 

 
 Sensing Fidelity 

Dimension 
Energy Efficiency 

Dimension 
Spatial Coverage 

Dimension 
Temporal Coverage 

Dimension 

Mobile Node 
Tier 

Adaptive Topology and 
Perspective 

Enable Low Energy 
Transport and 

Communications 

Enable Both Sensing and 
Sampling in 3-D 

Enable Long Term 
Sustainability 

Connected 
Fixed Node 

Tier 
Optimal, Precise 

Deployment of Nodes 

Enable Energy 
Production and Delivery 

Logistics 

Enable Optimized Node 
Location and Sensing 

Perspective in 3-D 

Continuous, In Situ 
Sensing-Sampling 

Untethered 
Fixed Nodes 

Tiers 
Localized Sensing and 

Sampling Capability 

Event Detection and 
Guidance for Mobile 

Assets 

Access to Non-Navigable 
Areas 

Continuous Low Energy 
Vigilance 

Table 2. The NIMS System Ecology includes Fixed and Mobile Node and Infrastructure Tiers to enable the adaptation 
required to optimize the Dimensions of sensing fidelity, energy efficiency, and reach the largest spatio-temporal coverage.  In this 
Table, the benefits contributed by each tier to these sensing dimensions are listed. 

The System Ecology opens a complex design space that enables adaptation to application demands.  For 
example, the relative demands of spatial sampling density and physical configuration latency both contribute 
to determining the required rate-distortion operating point. By exploiting the System Ecology, both at design-
time and run-time, therefore, the distribution of static and mobile sensors with varying operation range may 
be selected to match evolving environmental and application demands.  For example, at the cost of increased 
measurement latency, a slowly moving mobile sensor node may explore a region of space with a high 
sampling point density and at the cost of only few mobile assets.  Alternatively, at the cost of node resources, 
static or mobile nodes may be relocated and remain resident at locations that best benefit the sensing task.  
Such adaptations may evolve in time and space.   

Finally, the System Ecology may include both infrastructure-supported nodes of primary focus in this 
Technical Report, as well as unsupported and freely moving surface-bound or aerial robotic systems that 
further augment monitoring capability. 

4.2. Reactive and Proactive Coordinated Mobility  

Sensor diversity enables a method for determining and reducing sensing uncertainty.  Now, since sensing 
uncertainty arises from limitations associated with physical configuration of sensor network nodes, then physical 
reconfiguration in the form of articulation, mobility, and the distribution of new sensing assets is required for 
reducing uncertainty.  However, this then creates the requirements for systems that combine sensor diversity 
based self-awareness to enable coordinated mobility for measurement of sensing uncertainty and methods for 
effecting its reduction.  

The relocation of sensing assets may be in rapid response to a triggering event that results from physical 
phenomena directly or model-based analysis of phenomena.  This exploits progress in multi-robot 
operations,[24-25] however, with the new features of NIMS constrained and precise mobility.  This is enabled 
by reactive coordinated mobility.  However, the NIMS system many also proactively probe the sensor network 
environment to determine the spatio-temporal regions where sensing uncertainty is expected to be large.  This 
forms a proactive coordinated mobility operating regime. 

A domain specific application applies to the problem of detection of mobile objects (sources) in natural 
environments. For example, acoustic sensors may typically be deployed in environments where acoustic 
propagation is highly variable with source-sensor range, terrain foliage, and meteorological conditions. Yet, it 
is at the same time required that detection of sources remain effective throughout these variations. Figure 6 
illustrates an example where acoustic sensors are able to detect that sources have moved through their area, 
however, due to obstacles to sensing, these acoustic sensors are not able to support detection of an important 
large aggregation of sources.  A combination of both event detection and an awareness of sensing uncertainty 
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level produce a trigger for reactive coordinated mobility of mobile sensors and redeployment of nodes. Figure 6 
illustrates that coordinated mobility enables a potentially drastic advance in performance by optimizing sensor 
population and position with both mobile nodes (imaging devices with powerful viewing perspective) and 
redeployed sensors. In this example, a static node acts as a trigger and the system is able to physically relocate 
sensing assets to acquire data at higher resolution and diversity at the trigger location.  

Examples of proactive coordinated mobility include those where mobile nodes may analyze historical data 
(obtained via sensor diversity algorithms) and realize that particular areas are mapped with less certainty, 
causing them to revisit those areas at higher frequency until they are better mapped. Another reason for 
opportunistic motion is exploration, where in the absence of triggers from the static sensors on the ground, 
the mobile nodes proactively explore their configuration space, to detect phenomena of interest. For example, 
it is a general occurrence that in situ sensors may not successfully detect features of interest (i.e. acoustic 
sensors may not detect sound sources or chemical sensors may not detect compounds for which they are 
sensitive.)  However, of course, it cannot be concluded by the system that the lack of sensor signals means 
that no sources are present – they may simply be occluded by current environment conditions or be 
unexpected with respect to initial sensor deployment. Thus, proactive exploration of the sensing space is 
essential for establishing performance. Here, proactive coordinated mobility provides a constant background 
probing of system performance and at the same time surveying for unanticipated events and sources. Without 
this, the distributed sensor system may detect, at best, only those sources that were expected prior to 
deployment.    

 The underlying problem in coordinated mobility for any distributed actuated system is the selection 
of actions at the individual node level such that the entire system performance is optimized, or at least 
improved. Typically performance is measured using a task-specific objective function (give example from one 
of our applications here). This underlying action selection problem is widely studied in the mobile robotics 
community. Approaches fall broadly under one of two sets of algorithms: those that minimize spatial 
interference [26] (e.g. avoid collisions between nodes at junctions), and those that focus on task allocation 
[27-29] which dynamically assign nodes to tasks. Each of the two problems (interference and task allocation) 
exist for both regimes (proactive and reactive) in which NIMS operates. 

 
4.3. Coordinated Mobility Examples: Sampling 

An example illustrating NIMS reactive coordinated mobility is referred to as sampling.  An example of 
proactive coordinated mobility is referred to as exploration.  The exploration operating regime enables the 
detection and mapping of obstacles to sensing. 

 Consider the sampling problem where samples are acquired at k source locations s1, s2, … sk. The 
mobile nodes are at locations x(t). Assume there are N mobile nodes, with locations x1(t), x2(t), .. xN(t) and Q 
nodes on the ground with locations h1(t), h2(t), .. hQ(t). While the NIMS nodes are autonomously mobile, the 
sensors on the ground are not (however, they may be deployed up by the mobile nodes and relocated as well). 
The sensors generate observations Z(X,H,Y,t), where Y is the set of source locations.  

 In a simple version of sampling, the sensors on the ground are pre-deployed at fixed locations, and 
we can solve for X such that p(sk|Z) is maximized subject to visibility constraints, G. These constraints 
express knowledge about the map of the environment. Informally put, this asks the following question – 
‘What are good vantage points for the mobile sensors in response to a trigger from a sensor on the ground?’ 
For small values of k (few sources), the corresponding task-allocation problem (assigning action(s) to a few 
mobile nodes), and the interference problem (avoiding mobile node contention for use of infrastructure) by 
central planning. For small values of k (k <<N) both of these problems can be successfully solved using a 
central planner, and re-planning is relatively low in computational burden. At medium values of k (k ~ N), a 
hybrid technique may solve the problem. The NIMS system may be decomposed into a collection of clusters. 
Each cluster will have some mobile nodes and some fixed nodes as members. p(sk|Z) is then approximated 
by the product of terms depending on the configurations of the clusters instead of individual nodes. A central 
planner will handle the task-allocation and interference problems across clusters, whereas within each cluster, 
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Figure 6. An application example illustrates the aggregation of mobile objects 
(sources) at a location. In this typical example, fixed acoustic sensors are able to 
detect motion of some sources, but due to obstacles, are not able to detect the 
aggregated source population.  However, their combination of event detection and 
awareness of their sensing uncertainty enables a trigger of coordinated mobility where 
the fixed and mobile elements collaborate on both detection of souces and 
redeployment of nodes.  Coordination includes redeployment of nodes on more than 
one infrastructure element. 

reactive techniques will be used to address these problems. At values of k larger than N, synoptic sampling by 
re-positioning mobile nodes alone, is impossible - a somewhat more complex version of sampling is needed 
where the sensors on the ground are repositioned by the mobile nodes, followed by a repositioning of the 
mobile nodes themselves.  

 This latter version of 
the sampling problem requires 
us to solve for H and X such that 
p(sk|Z) is maximized subject to 
the visibility constraints G. 
Informally put – ‘where should 
the ground sensors be deployed 
and where should the mobile 
sensors position themselves?’ In 
this regime the conditional 
probability of sampling at 
locations sk can be factorized 
into the probability of sampling 
conditioned on the positions of 
the mobile nodes, and the 
probability of sampling 
conditioned on the positions of 
the nodes on the ground. This 
enables a solution for the 
configurations of the mobile and 
ground nodes separately. The 
task allocation problem for 
assigning mobile nodes to fixed 
ground nodes using reactive 
techniques will follow a greedy 
assignment, and planner-based 
techniques will optimize the sum 
of the distances traveled by the mobile nodes.  

 
4.4. Coordinated Mobility Examples: Exploration  

 We now consider a second problem, exploration: an example of the proactive regime. In particular, 
consider the case where the mobile nodes explore the environment opportunistically to build a map of the 
environment. The mobile nodes identify the locations of obstacles in the environment to update the visibility 
constraints G. Formally, this is the problem of minimizing uncertainty in G given the observations Z. This 
problem has been studied in vision [30] (given the camera pose, estimate the poses of feature points) and 
robotics [31] (build a map of the environment given the location of the robot(s)). A completely distributed, 
greedy solution to the problem would be for each mobile node to update G individually. This is likely to lead 
to suboptimal task allocation (node visits to each area would overlap) and possibly high interference. A 
hybrid, cluster-based approach could mitigate the sub-optimal allocation to a certain extent, but interference 
problems would still have to be solved reactively. Another approach will be to embed the ‘rules of the road’ 
into the NIMS infrastructure itself, so that spatial contention between nodes would be reduced. However, 
given that this regime does not necessarily require as fast a response as the pull regime, it may be possible to 
rely on centralized planning to a large extent. We observe that this version of the problem where nodes 
explore opportunistically to build a map of the environment is made significantly harder if all the nodes 
positions are not known precisely. This, more general, problem is that of simultaneously localizing nodes and 
mapping the environment, and is known to be very difficult to solve in large part due to issues in data-
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association[32]. Incremental but approximate solutions exist [32], which interleave the estimation of node 
locations with map estimations. These approaches interleave the two estimation problems by maximizing the 
probability of the node locations and map conditioned on the sensor readings. The most likely map that 
maximizes this conditional is used to estimate locations. This process is repeated until convergence. We 
propose to focus primarily on the mapping problem. We will solve the localization problem to a high degree 
of accuracy for mobile nodes [33] by imaging known GPS locations on the ground. Once locations (and 
hence visibility constraints) are known, maps may be constructed accurately. 
 
 

5. NIMS for Environmental Ambient Intelligence 

Figure 7 shows an image of a NIMS prototype 
system developed for forest environment monitoring.  
Its objective is the monitoring of critical parameters, 
including complex microclimate dynamics and also the 
spatiotemporally dynamic light environment that affect 
plant physiology and in particular, photosynthetic 
production by plants.  The NIMS node also includes 
capability for imaging of the forest ecosystem.   The 
NIMS node and its cable may be suspended between 
trees (or other structure).  In addition to horizontal 
transport, vertical node transport is included as well.  
Thus, the NIMS system may access nearly the entire 
volume of a transect defined by a plane between two 
trees 

This prototype system includes an embedded 
processing platform (Linux operating system) and 
horizontal motion drive in a horizontally mobile Class II 
node.  This node also includes a two-axis articulated 
image sensor.  The NIMS node also carries a vertical 
transport mechanism for a vertically-suspended Class III 
NIMS node.  This second node includes atmospheric 
temperature and relative humidity meteorological 
sensors along with an optical sensor for detection of 
downwelling photosynthetically active radiation (PAR).  
Wireless networking supports links between the Class II 
and Class III NIMS nodes, fixed nodes, and gateway 
access points to the Internet that are distributed in the 
environment.  While developed for forest monitoring, it is clear that this NIMS system is applicable in many 
other environments and is also one application-specific example of a very large configuration space of NIMS 
architecture choices. 

NIMS has recently been deployed in both test environments for fundamental algorithm and system 
research as well as in a natural environment, the Wind River Canopy Crane Research Facility in the Wind 
River Experimental Forest in Washington.  A view of the NIMS node suspended in the forest environment is 
shown in Figure 7 and Figure 8 with both detail and panoramic views. 

This system includes an embedded processing platform (Linux operating system) and horizontal motion 
drive in a horizontally mobile Class II node.  This node also includes a two-axis articulated image sensor.  The 
NIMS node also carries a vertical transport mechanism for a vertically-suspended Class III NIMS node.  This 
second node includes atmospheric temperature and relative humidity meteorological sensors along with an 
optical sensor for detection of downwelling photosynthetically active radiation (PAR).  Wireless networking 
supports links between the Class II and Class III NIMS nodes, fixed nodes, and gateway access points to the 

NIMS Node Classes 

NIMS node and infrastructure appear in four classes 
defined by the nature of infrastructure and nodes 
reconfigurability and mobility.  These are listed below.

NIMS Class I Systems composed of fixed 
infrastructure with fixed nodes 
supported by the infrastructure 

NIMS Class II Systems composed of fixed 
infrastructure (this may be fixed 
cableways or fixed rigid 
infrastructure) and mobile nodes 
that propagate on the 
infrastructure. 

NIMS Class III Systems composed of mobile 
infrastructure (this may include 
moving cableways to which nodes 
are attached). 

NIMS Class IV Systems composed of both mobile 
infrastructure and mobile nodes. 
An example of a Class IV system 
is shown in Figure 2a where two 
parallel cableways support NIMS 
nodes that themselves support a 
cable transverse relative to these 
parallel cables.   
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Internet that are distributed in the environment.  While developed for forest monitoring, it is clear that this 
NIMS system is applicable in many other environments and is also one application-specific example of a very 
large configuration space of NIMS architecture choices. 

 
 

   
Figure 7. (Left Panel) A Class II NIMS Node system deployed in a forest environment.  This node includes embedded computing, 
wireless networking, horizontal transport, image sensing.  This node also supports a vertically suspended meteorological sensing Class 
III Node carrying atmospheric temperature, relative humidity, and photosynthetically active radiation (PAR) sensor devices. 
Wireless links provide access between the nodes and conventional wide area networks. 

 

 
Figure 8. The NIMS node system is shown in a panoramic view.  This system was deployed at the Wind River Canopy Crane 
Research natural forest facility.  
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6. Summary 

The realization of Ambient Intelligence in many environments will require methods for mapping and 
reducing spatio-temporally varying sensing uncertainty.  Sensing uncertainty results from the presence of 
unknown path loss in sensor signal propagation and unknown sensor system calibration.  Obstacles to 
sensing, often the structures in the environment of interest, may occlude light or sound propagation or 
introduce.  Uncertainty may enter detection of dissolved chemical agents in water, for example, due to 
changing currents.  Clearly, sensing uncertainty is a general problem that will limit distributed sensor system 
performance in many applications by reducing the probability of detection and introducing distortion in 
fusion-based detection, identification, and localization. 

After the deployment of a fixed sensor network, distortion or occlusion in the physical sensing channel 
will be ultimately manifested as sensing uncertainty.  Since the sensing channel depends on physical properties 
of the environment and sensor elements, then in general, only a physical reconfiguration can change this 
distortion or occlusion.  Thus, mobility and articulation of perspective are required to be present in  some 
elements of distributed sensors networks.  This mobility, however, must be precise (so as to not introduce 
further uncertainty relative to location), must probe 3-D spaces, and must also operate with sustainable 
characteristics to enable long-term operations. 

The Networked Infomechanical Systems (NIMS) architecture has been introduced to provide these 
characteristics of precise navigation in complex 3-D environments with a low energy transport method.  
Now, to match the spatiotemporal variation of environments, the distributed sensor system must incorporate 
fixed and mobile devices along with systems that provide services, including transport of computation, 
communication, time synchronization, and transport of node systems and energy resources.  The systematic 
implementation of architectures that match these requirements invokes the need for a complete System 
Ecology hierarchy of nodes and infrastructure. Now, development of Ambient Intelligence can access a vastly 
expanded design space to match environmental monitoring goals. 

For autonomous Ambient Intelligence operations, the NIMS systems must itself autonomously explore 
the environment in an adaptive fashion to produce the required spatiotemporal map of sensing uncertainty. 
Sensor diversity algorithms are introduced to exploit many sensor types, sensing perspectives, and locations.  
Through coordinated mobility algorithms, fixed and mobile nodes may cooperate to proactively probe the 
environment to establish the uncertainty map and then adaptively adjust available sensing resources to reduce 
sensing uncertainty.  In addition, coordinated mobility may respond also to events on demand.  NIMS 
introduces a further mobility-enabled approach for environmental characterization with the ability for 
autonomous physical sampling of material in the environment – relaxing demands on sensing requirements 
and creating opportunities for sensitive trace analysis of components. 

NIMS capabilities are matched to a broad range of Ambient Intelligence applications in natural, indoor, 
and urban environments.  Applications for environmental science and public health and safety have been 
described.  Another set of Ambient Intelligence NIMS applications may focus on indoor “built” 
environments with functionality intended to support individuals and groups to promote collaboration, 
productivity, and safety.    These benefits may apply to healthcare clinics, to the workplace, to architectural 
and artistic and to entertainment environments.  For example, the lighting, displays devices, and acoustics 
within a space may be dynamically modified to best benefit productivity or artistic goals.  Personnel may 
exploit the electromechanical reconfigurability of NIMS technology also to support architectural features that 
modify structures in response to needs or environmental changes.   

NIMS technology adds new dimensions to Ambient Intelligence by introducing an entire System ecology 
of distributed devices, infrastructures and autonomous systems.  NIMS research is anticipated to enable many 
new applications with the ability to explore environments, actively optimize system performance, and also 
adapt environments to benefit users. 
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